
Lecture 1: Polyhedra Model and Nonsingular
Transformations

Chaofan Lin, TA of Advanced Compiler
Spring 2023

1 Polyhedra Model

1.1 Perfectly Nested Loops

For simplicity, we only consider a well-formed type of loops in this Chapter, which is called per-
fectly nested loops.

In general a n-dim perfectly nested loop has the form (Definition 1):

do i1 = L1, U1

do i2 = L2, U2

. . .

do in = Ln, Un

S(i1, i2, . . . , in)

For every loop statement, it has a loop index ik, a lower bound Lk, a upper bound Uk and a step
size (In this example the step size is 1 so it can be omitted). The semantic is similar with for-loop
in popular programming languages.

A prominent feature is that the statement S is only in the innermost loop. So you can not have

do i1 = L1, U1

S1(i1)

do i2 = L2, U2

S2(i1, i2)

And there are some other constraints on the perfectly nested loops:

• For the k-th loop, Lk(Uk) must be a maxima(minima) of affine expressions of the outer k -
1 loop indices i1, . . . , ik−1 with rational constant coefficients. Problem size parameters (E.g.
N,M in the OI problem) can be also viewed as a type of constants.

• Besides, ceiling / floor operators are also allowed in the Lk/Uk to make the bound a integer.

1.2 Iteration Space

An iteration is an instance of the innermost statement in our perfectly nested loops model. For
example, if you have a 2-dim loop, each dim is just for 1 to N , then you get N2 instances of the



innermost statement.

An iteration can be fully identified by all n loop indices. So we get an iteration vector of an
iteration (Definition 2):

i⃗ = (i1, i2, . . . , in)

(Definition 3) the iteration space I is the set of all loop iteration vectors:

I = {(i1, i2, . . . , in) | ∀1 ≤ k ≤ n : Lk ≤ ik ≤ Uk}

If we put them in the Rn space, we can view every iteration as a integer point in the space. And
the iteration space is just a set of points. Usually we will absue the language slightly by assuming
implicitly that I is a subset of Rn (Even though it only contains integer points!).

Recall that we require max only presents in Lk and min only presents in Uk, which is the constraint
of perfectly nested loop. This makes the iteration space ”convex”:

(Theorem 1) The iteration space I (as a subset of Rn) is convex in Rn, i.e. for any x, y ∈ I and
λ ∈ [0, 1], λx+ (1− λ)y ∈ I.

Proof. First let’s not consider max/min presenting in bounds. Then it’s just a n-dim rectangle
which is certainly convex. And because the intersection of convex sets is also convex, I is convex.

According its convexity, it can be written as the following normalised form:

I = {⃗i | B⃗i ≤ b⃗}

where B is a m× n matrix. n is the dimension of the loop and m depends on the bounds.

(Example 1) Let’s look at an example of a double loop.

do i1 = 1, N

do i2 = max(−i1 + 4, ⌈ i1 − 1

2
⌉),min(8, ⌊−3i1 + 33

2
⌋)

A(i1, i2) = A(i1 − 1, i2) +A(3i1, i2 + 1)

Its iteration space is an area constrained by six inequalities:

2



And in R2 it looks like as follows. Note that as the problem size parameter N changes, the shape
of iteration space changes probably.

We can write its normalised form:

I =

{(
i1
i2

) ∣∣∣∣


−1 0
1 0
−1 −1
1 −2
0 1
3 2


(
i1
i2

)
≤



−1
N
−4
1
8
33


}

2 Nonsingular Transformations

2.1 Introduction

To learn loop transformations, we start from a simple transformation: nonsingular transfor-
mations. It’s a type of iteration reordering transformation. For every iteration reordering
transformation, we have a reordering mapping φ : I 7→ I′.

(Definition 4) T ∈ Zn×n is nonsingular (i.e. full-rank). Then the nonsingular transformation
defined by this matrix is

φ : I 7→ I′, φ(⃗i) = T i⃗

It’s obvious that it is a linear transformation and the reordering mapping is injective. It will reorder
the iterations because for an iteration space, in each loop indices we always go from lower bound
to upper bound.

3



2.2 Some Math Preparation

Given that we are studying integer matrices, there are some important concepts and lemmas needed
to be introduced. First let’s consider the ”full-rank matrix” in integer matrices, unimodular ma-
trices.

(Definition 5) A unimodular matrix is an square integer matrix A with det(A) = ±1.

An important property is that it is closed in terms of inverse.

(Lemma 1) For an integer matrix A,

A is unimodular ⇐⇒ A−1 is an integer matrix.

Proof. =⇒: First det(A) ̸= 0 so A is inversible. And A−1 = A∗

det(A) is surely an integer matrix.

⇐=: det(A)det(A−1) = det(In) = 1.

And naturally we have A is unimodular ⇐⇒ A−1 is unimodular. To show why unimodular matrices
are similar with full-rank matrices, we need to introduce ”spanning space” in the integer world,
which is called lattices.

(Definition 6) The lattice of a matrix A = [⃗a1, . . . , a⃗n] is defined as

L(A) = {λ1a⃗1 + · · ·+ λna⃗n | λ1, . . . , λn ∈ Z}

A interesting fact is that multiplying a unimodular matrix will not affect its lattice.

(Lemma 2) For any matrix A and any unimodular matrix U ,

L(A) = L(AU)

Proof.
L(A) ⊇ L(AU) ⊇ L(AUU−1)

Then we have a simple corollary

4



(Corollary of Lemma 2) For any unimodular matrix U ,

L(U) = Zn

Proof.
L(U) = L(UIn) = L(In) = Zn

And finally we have an important theorem which we will not give the proof here.

(Theorem 2, Hermite Normal Form) For every nonsingular integer matrix A ∈ Zn×n, there is
a unimodular matrix U such that

AU = H

where H is a nonnegative lower triangular matrix, in which each row has a unique maximum
component, which is located on its main diagonal.

Here both U and H are unique. And if A is unimodular, then H = In.

2.3 Transformed Iteration Space

Suppose the original iteration space is
I = {B⃗i ≤ b⃗}

Then one may naturally assume that the transformed iteration space I′ is

I′ = {BT−1i⃗′ ≤ b⃗}

It is close but not all integer points in this region can find its corresponding original image, i⃗. Given
that i⃗ is an integer vector, it requires that i⃗′ ∈ L(T ), so the answer is

I′ = L(T ) ∩ {BT−1i⃗′ ≤ b⃗}

But if T is unimodular (We call it unimodular transformation), then L(T ) = Zn so the first
assumption is correct. In this case, the transformed iteration space is convex. But in general there
are examples where I′ is not convex.

2.4 Code Generation Algorithm

Code generation is the process converting transformed iteration space to the final loop code. A
general method to generate nonsingular transformed loops is proposed by Xue, 1994. It contains

5



four steps. The generated loop has the form

do i1 = L′
1 + δ′1, U

′
1, step

′
1

do i2 = L′
2 + δ′2, U

′
2, step

′
2

. . .

do in = L′
n + δ′n, U

′
n, step

′
ni1

...
in

 = T−1

i′1
...
i′n


S(i1, i2, . . . , in)

Here δ′k is called lower bound offset. There are offsets and step-size changes after transforming
because we need to intersect with L(T ).

2.4.1 New Lower/Upper Bound

After transformation, we need to solve the inequalities system to find bounds for each loop index.
There is a powerful algorithm called Fourier-Motzkin elimination to do this.

(Algorithm 1, Fourier-Motzkin elimination) Suppose we have an inequality system
P (x1, x2, . . . , xn) = {x⃗ | Ax⃗ ≤ b⃗}. We want find the explicit representation of P (x1, x2, . . . , xn−1)
such that P (x1, x2, . . . , xn−1) = {x⃗[1 . . . n− 1] | Ax⃗ ≤ b⃗}.
To eliminate xn, we first divide all inequalities in the system into three categories:

• 1. Those that are independent of xn,

• 2. Those that are lower bounds of xn,

• 3. Those that are upper bounds of xn.

We preserve all Type 1 inequalities. And for every pair of Type 2 and 3,

xn ≥ l(x1, . . . , xn−1), xn ≤ u(x1, . . . , xn−1)

we construct a new inequality to the system

l(x1, . . . , xn−1) ≤ u(x1, . . . , xn−1)

Then the new system is free of xn and satisfies our requirements.

We can first apply n − 1 times FME and get the bounds of i′1, then go back to get the bounds of
i′2, . . . , i

′
n.

6



2.4.2 New Step Size

Given that the existence of L(T ), there may be some ”holes” in the transformed iteration space,
which makes the new loop step size no longer be 1. As the following shows, it should use step size
2 in the loop index I ′1.

Considering what step size we should take in k-th loop. We just need to consider what step size
can generate the following one-dim lattice (Why?)

Lk(T ) := {i′k | (0, . . . , 0, i′k, . . . , i′n) ∈ L(T )}

Because L(T ) = L(H), it is more convenient for us to consider a lower triangle matrix. Since the
first k − 1 indices are zeros, the coefficients before these rows are enforced to be zeros two. Then
we have i′k = λHk,k where λ ∈ Z.

This means we have
Lk(T ) = Lk([Hk,k])

So the step size is exactly Hk,k (The k-th value in the main diagonal of H).

2.4.3 New Lower Bound Offset

Because the lower bound Lk can’t always fall in the lattice L(T ), there is an offset between lower
bound and the true start position. The core idea is to add a minimal number such that the points
can fall in the lattice L(T ). Given that it is a bit complicated, I will not introduce more here.

3 References

• Loop Tiling For Parallelism, Jingling Xue, 2000.

• Automating non-unimodular loop transformations for massive parallelism, Jingling Xue, Par-
allel Computing 20 (1994) 711-728.

7


